FagerDB:
A Predictive Cache Warming Tool
6.885 Final Paper

John J. Wang
wangjohn@mit.edu

December 13, 2013

Abstract

Many applications increase database performance using some form of caching. The
majority of cache implementations, however, only increase performance for queries that
have been already seen. EagerDB takes this a step farther and provides a predictive
cache. It predicts queries that will occur in the future with high probability and
automatically loads them into the cache. EagerDB allows the user to manually specify
query preloads or automatically parse historical database logs, estimate a Markov
model, and preload queries which have high transition probabilities.

1 Introduction

Most web applications improve database performance by caching — storing data has
previously been used. Using a cache can dramatically improve database performance
when temporal locality is present (i.e. when previously requested data is requested
multiple times). Caching has become one of the most fundamental concepts in com-
puter science, and in turn, almost all large technology companies use caches in some
form.

However, caches assume that historical data repeats. This assumption does not
capture all of the potential performance gains that are possible. In fact, there is quite
a large amount of data that exists which can be used to improve performance even
further. Since there workflows of users tend to be methodical, the queries that get sent
to a database can be predicted. One can then estimate the probability of some query
X happening given the current state of the database, and “preload” X when it has a
high probability of happening.

EagerDB provides a framework for preloading such queries. Developers can man-
ually specify queries to preload or they can use a prediction engine for discovering
queries to preload. EagerDB is built as a Ruby gem and can be easily included in a
Ruby on Rails web application for easy improvements in database performance. This
paper shall outline the design of EagerDB, the reasons for making particular design
decisions, and the results of benchmark tests.

2 Background

There have been a number of papers which have thought to use predictive caching.
Lempel and Moran (2003) use predictive caching to improve the speed of search results.
However, their prefetching is entirely specific to search, and they focus their attention
on the optimal number of pagesof search results, n, to prefetch into an in-memory cache.
Although Lempel and Moran (2003) make a leap of forward progress for predictive
caching, they do not solve the general problem of predictive caching for arbitrary
query types.

Kraiss and Weikum (1998) use a Markov model for predictive caching in the con-
text of multimedia document archives. In their work, documents are speculatively
prefetched if the expected number of hits on a document is higher than the expected
number of hits on the documents that must be dropped from the cache. Unfortunately,
this framework does not account for the complexity of database queries. Although the
number of documents in an archive is finite, the number of possible queries to a database
is infinite.

EagerDB extends the idea of predictive caching to be more general. In essence,
any query that is sent to a database can be a predictor for a future query. The future
query, moreover, can be correlated with the original query. EagerDB provides a flexible
framework for defining relationships between a query being sent to the database and
future queries.

3 Manual Query Syntax

EagerDB has its own easy to use syntax for manually specifying preloads. Behind
this manual query syntax is the idea that any query Y can be used as an indicator
for a later query X. Thus, if the probability of X occurring is high given that Y has
occurred, then one should preload X by bringing it into the database’s cache. We call
Y the match statement, and X the preload statement.

3.1 Basic Definitions

In order to explain match and preload statements more, we need to make a distinction
between non-binded and binded SQL queries. A binded SQL query is just any instance
of a valid SQL statement which contains table, column, and attribute values. An
example of a binded SQL query would be:

SELECT % FROM distributors WHERE name = ’walmart’ AND
town = ’Chicago’ AND state = ’IL’

A non-binded SQL query is just an instance of a valid SQL statement which contains
table and column values, but does not contain attribute values. For example, the non-
binded version of the previous SQL query would be:

SELECT % FROM distributors WHERE name = 7 AND
town = ? AND state = ?

Non-binded SQL queries can be converted into binded SQL queries by providing
bind values, an array of values which would be inserted into each bind location (de-
noted by a 7 in the non-binded SQL query). To convert the previous non-binded SQL

2

statement into a binded SQL statement, one would need to pass in the following array
of bind values:

[’walmart’, ’IL’]

3.2 Match Preload Files

Match and preload statements are non-binded SQL queries. Match statements allow
EagerDB to match on a particular SQL statement structure, and preload statements
allow us to preload a specific SQL statement structure when match statements occur.
In this vein, one could manually specify match and preload statements. This is done
by first specifying a single match statement, then any number of preload statements
to load into the cache whenever that match statement is seen.

In a match preload file (MP file), a developer using EagerDB can specify a list
of match statements and their corresponding preload statements. EagerDB can read
over an MP file and incorporate any match and preload statements that have been
made inside the file. A developer can use the MP file as a stand-alone product without
running the Markov model so that the preload statements in the MP file will be the
only statements preloaded by EagerDB, or incorporate the MP file as an addition on
top of the Markov model’s statements. The syntax for an MP file is straightforward:

e Match statements are preceded by a dash “-”.

e Preload statements are preceded by a rocket “=>". Preload statements will be
paired with the last match statement seen in the MP file.

e SQL statements are encapsulated by quotation marks.

e Bind values, separated by commas, follow the SQL statement. The it bind value
in the SQL statement corresponds to the it comma separated value after the

SQL statement.

In addition to these syntax rules, there are methods provided for bind values which
allow making general preload statements much easier. We provide the match_result
and match_bind_value keywords.

The match_result keyword provides access to the result of the match statement
of a preload. Omne can access the value of a column in the result by asking for the
column name like so: match_result.column_name. For example, if a developer wanted
to access the id of the result from his match statement, he could write a preload
statement like so:

=> "SELECT x FROM things WHERE product_id = 77, match_result.id

The match_bind_value keyword is a similar construction, but provides access to
the bind value of the binded instance of the match statement. One specifies an index
1 after the match _bind value keyword, which gives access to the ith bind value from
the match statement. For example, one could write:

— "SELECT *x FROM products WHERE name = 7”7
=> "SELECT % FROM things WHERE product_-name = 7”7, match_bind_value (0)

In the above, whenever of a SQL query of the form SELECT * FROM products
WHERE name = 7 is seen, EagerDB will take the zeroth bind value (bind values are

3

indexed by 0) from the statement and use it as the zeroth bind value in the preload
statement SELECT * FROM things WHERE product_name = 7.

"SELECT * FROM users WHERE name = 77
=> "SELECT % FROM products WHERE owner_id = 77,
match_result.id

"SELECT % FROM pinterest WHERE pin = ? AND interest = 77

=> "SELECT % FROM tables WHERE pin = ? AND interest = 77,
match_bind_value (0), match_bind_value (1)

=> "SELECT % FROM interests WHERE interest = 7 AND
pinterest_id = 7?7, match_bind_value (1), match_result.id

Figure 1: A snippet from an MP file

Figure [1] provides an example instance of an MP file. In this file, there are two
match statements. The first match statement has a single preload, while the second
match statement has two preloads. EagerDB will listen to the stream of SQL queries
coming from the database, and whenever a match statement matches the structure of
a query, the preload statements associated with that match statement will be brought
into the database’s cache.

For example, using the MP file from figure (I} suppose the following sequence of
queries arrived at the database (ordered chronologically):

SELECT % FROM products WHERE name = ’table’ AND state = ’IL’
SELECT % FROM users WHERE name = ’john’
SELECT % FROM laptops WHERE BRAND = ’lenovo’ AND serial_number = 5’

Then, after the second query (SELECT * FROM users WHERE name = ’john’) was
run, its corresponding preload statement would be brought into the cache. For example,
if the second query returned a result with an id of 52, then the following query would
be brought into the database’s cache: SELECT * FROM products WHERE owner_id =
52. The other queries in the sequence did not match the structure of any of the match
statements, so EagerDB would not bring anything into the cache after their execution.

4 System Design

The EagerDB system is designed to be as unobstrusive as possible. It sits at the
middleware level and only needs two things: 1) a connection to the stream of SQL
queries and results being sent to and from the database and 2) a connection to the
database for preloading queries. As a Ruby gem, EagerDB requires a minimal amount
of integration and can be incorporated into a Ruby on Rails web application with less
than 15 lines of code.

The system is also designed to be distributed and scalable. The EagerDB system
is easily extended to multiple machines and can still be used with a sharded database.
More details of the design later in the paper will show how this can be accomplished
without any changes to the framework.

EagerDB is designed for flexibility, since it works on any database with a built-in
cache, including MySQL, PostgreSQL, etc. It is SQL syntax agnostic, meaning that
small variations in the syntax between different databases will not prevent EagerDB
from preloading queries. This quality comes about because of the non-binded vs.
binded SQL abstraction: all match statements are non-binded and general. In fact,
EagerDB could potentially preload NoSQL queries, such as those from MongoDB,
without any problems.

Additionally, EagerDB uses the database’s own cache. This greatly simplifies setup
and reduces the number of failure points. Instead of providing its own cache, which
would have to deal with cache invalidation issues as well as duplication of data, Ea-
gerDB can rely on the pre-built mechanisms of the database. Thus, the design is
resistant to bloating memory, and a user can tweak the size and properties of a single
cache (instead of two). Moreover, using the database’s own cache means that EagerDB
can be used on more than just web applications. Since it has no appliction-specific logic,
FagerDB can be used for anything that sends sends queries to a database.

Finally, EagerDB internally reads data from the MP file format, which enables a
developer to change automatically generated preloads and provide their own preloads
relatively easily. Having a single format for representing data greatly simplifies the
amount of work a developer needs to do to make changes to their own preloads.

In order to accomplish all of the above traits, EagerDB makes a number of abstrac-
tions which will be presented in this section. The codebase is written in Ruby (so that
it can conveniently be used in Ruby on Rails web applications) and is broken up into
two sections. The first is the processing code, which provides the infrastructure for
parsing MP files and running EagerDB with a live stream of queries, and the second is
the prediction code, which creates a Markov model and outputs an MP file based on
historical database logs.

4.1 Processing Code

The processing code provides abstractions for listening to a stream of queries going to
the database, encapsulating each query as a job to be processed, and finally processing
those jobs and sending the resulting preload queries (if there are any) back to the
database to be executed. When the preload queries get to the database, they will
warm the database’s cache and will speed up the execution of the same query in the
future. Figure [2| provides an overview of the high-level architecture.

First, a CommunicationChannel object sits between the database and the controller
and listens to queries that get sent to the database. Whenever a query appears in the
CommunicationChannel, the query and its result will be processed and converted into
a SQLQueryJob. This job is then placed on a query queue, which temporarily holds
the SQLQueryJobs. A process runs and attempts to keep the query queue empty at
all times, sending SQLQueryJobs as quickly as possible to an instance of a processor
aggregator. Each processor aggregator will handle a SQLQueryJob and determine which
preload statements (if any) need to be sent to the database.

Processor aggregators hold the many processors, the fundametal object for com-
putation in EagerDB. Processors hold a single match statement and multiple preload
statements. The processor is an encapsulation of a match statement and its preloads
as defined in an MP file. There are two crucial methods for a processor in its public
API, these are matches? and process_preloads. The matches? method takes in a

Controller

SQL
—— | Query
Job

Query
Queue

Figure 2: SqlQueryJobs are created from the incoming stream of queries, placed onto a
queue, and finally sent to processor aggregators.

raw, binded SQL query from the SQLQueryJob (originally part of the stream of SQL
queries going to the database) and checks if that query matches the processor’s match
statement. The process_preloads method will take in the same raw, binded SQL
query, and will return binded preloaded statements if matches? returns true, and an
empty list otherwise.

Each processor aggregator holds all of the processors from an MP file, and all pro-
cessor aggregators are equivalent. When used with a single machine, EagerDB would
only create a single processor aggregator, but one could create many more processor
aggregators to scale. Figure [3] shows an overview of the processor aggregator. Basi-
cally, the aggregator parses the raw SQL from the SQLQueryJob, then hands off the
resulting job to the correct processor. If the parsed SQL matches a processor’s match
statement, then that processor’s preload statements get added to the preload query
queue, and will eventually reach and be executed by the database.

The default implementation of the query processor uses a hash table so that state-
ments can be matched very quickly. When a new SQLQueryJob comes in, the non-
binded SQL is used as a key in the hash table. The hash table values for a particular
non-binded SQL key is an array of all processors that match on that SQL statement.
Thus, the total time required to process any statement and load preloads is O(k) where
k is the number of matching statements (assuming that the number of preloads per
match statement is less than some constant). Most applications tend to have incredibly
small k’s, which makes this process extremely fast. This runtime is also asymptotically
optimal because loading a match statement’s k preloads will require Q(k) runtime.

4.2 Sharding Databases and Scaling EagerDB

This subsection will spend some time discussing implications of design decisions on
scaling. First, notice that increasing throughput for EagerDB jobs is incredibly easy:
just add more processor aggregators. We have a couple nice properties that allow this
to occur. First, each SQLQueryJob only needs to go to a single processor, since each

saL Parsed
Query Job el
Y Query Job

Preload
Query
Queue

Figure 3: Processor aggregators process the SqlQueryJob (which contains raw, non-binded
SQL from the stream) and sends parsed result to individual processors. Matches result in
preloads getting sent to a preload queue.

aggregator is identical. Second, SQLQueryJobs can be dropped by the network without
fear of losing real information (only possible performance improvements). Of course,
if the probability of a network failure is p, and the developer wanted an arrival rate of
a, then one could send [a/p] SQLQueryJobs over the network to obtain the required
arrival rate.

Sharding the underlying database is also quite easy, as long as an appropriate
function for mapping a SQL query to a particular shard exists. Each database shard
would get its own query queue. The query queue would have access to all processor
aggregators, and the processor aggregators would have references to all database shards.
The preload query queue on each processor aggregator would send the preload query
to the correct shard by invoking the function for mapping queries to shards. Thus,
sharding databases, though not implemented in the current version of EagerDB, can
be performed without major modifications to the underlying framework.

4.3 Prediction Code

This section will discuss how automatic prediction of high probability preloads are
made. The general idea is to build a Markov model based on historical database
logs, then find match-preload pairs with high transition probabilities. We think of
the state of the Markov model at time ¢ as the last raw, binded SQL query that was
run before time t. Thus, we want to find an estimate of P(X|Y) for all X in the set
of possible queries and where Y is the current state. We can then create a match
pair if P(X|Y) > X for some parameter A\. A match pair, denoted as (Y, X), are two
non-binded SQL statements, where Y is the match statement and X is the preload
statement.

To estimate P(X|Y'), we will use historical database logs and a time parameter 7.
Here, T will be a time after which queries are no longer considered pairs. For example
if Y occurs, then X occurs 10 years later, there is a very little chance that Y is actually
predictive of X. Thus, we will only consider (Y, X) pairs where X occurs within time 7T’
after Y has occurred. The complete algorithm for estimating probability is as follows:

e Break apart and group database logs by user id or ip-address (or a similar metric,
depending on which is available in the data). Each group should contain the
queries made by a single user or ip-address.

e For each query Y in the group, find the other queries X which occur within time
T of Y occurring, and increment the count, C'((Y, X)), of the (Y, X) pair. Also,
increment the count, C(Y), of the number of times Y occurs.

e After processing each group, and all queries in each group, you have the total
occurrences of each (Y, X)) pair, and the total occurrences of each query Y. Now
use the estimate P(X|Y) = C((Y, X))/C(Y). Check if P(X|Y") > X for any Y, X
pair. Return all such (Y, X) pairs as a match.

Notice that this calculation is easily parallelizable in the MapReduce framework.
The grouped queries for a particular user or ip-address are passed as documents in the
map step, where each document contains queries for a particular user or ip-address.
Then, for each query Y, we can emit the Y as the key, and an array of all the X’s
which occur within 7" time of Y occuring as the value. In the reduce step, we compute
P(X]Y) for all possible X’s that have been sent to this particular node. We do this
by computing C((Y, X)) and C(Y'), since we can record a count of the total number of
times Y occurred, as well as the number of times X occurs in the array of values. In
this way, massive database logs can be broken up and used for finding potential match
pairs.

Now we have identified pairs of queries which happen together with high probability.
More specifically, we can say that if Y occurs, then X occurs with high probability
within T" after Y occurs. We now need to identify the bind values for X. To do this, we
can look through all of the binded, raw occurrences of Y (i.e. the raw SQL query going
to the database), identify its bind values, and compare them to all of the subsequent
binded X occurrences. We can then find a mapping between the bind values indices
on Y and X, and see if this mapping persists across all X’s. For example, consider the
following match pair (in MP file syntax):

— 7SELECT % FROM names WHERE name = ?”
=> "SELECT % FROM hats WHERE owner = ?7”

If there were many example instances of this rule, and it happened that the zeroth
bind value in the match statement (“name = ?” in the above example) was the same
as the zeroth bind value in the preload statement (“owner = ?” in the above example)
with high probability, then one could expect the bind value in the preload statement
to be match bind value(0). EagerDB uses a probabilistic algorithm similar to this
for finding bind values in preloads. For bind values requiring the use of match_result,
EagerDB uses a best guess and performs fuzzy matching on the result’s column name,
and the bind value’s column name. For example, in the above example, if the result of
the match query returned rows with a column attribute named “owner”, then EagerDB
would use match result.owner as the bind value.

5 Results

To test the performance of EagerDB, we ran benchmark tests using MySQL version
5.5.34, for debian-linux-gnu. We chose to use the OLTP database benchmark suite,

which can be found at http://www.oltpbenchmark.com. In particular, we focused
on the Twitter benchmark, which simulates a workload similar to the one that would
be received by Twitter databases. We modified the performance benchmark slightly,
removing all inserts (since EagerDB does not handle insertions) and adding a Markov
model so that it had transition probabilities between states.

The Twitter benchmark was chosen due to its simplicity (a small number of ta-
bles and attributes). Because it is not as complex as other benchmarks (the TPCC
benchmark for example) the Twitter benchmark can be used to gain intuition for how
well EagerDB performs. The modified Twitter benchmark had four tables with the
following attributes:

e user_profiles: INT id, CHAR(20) name

o tweets: INT uid, CHAR(20) name, VARCHAR(200) data
e follows: INT f1, INT {2

e followers: INT f1, INT {2

The tweets table has a foreign key uid into the user _profiles table. Additionally,
f1 and £2 are both foreign keys into the user_profiles table for both the follows
and followers table. We created a Markov process which had some probability of
making a completely random query with randomly chosen bind values. It also had
some probability of making a child query, which used the result and bind values of the
previous query to make a new query. The intuition behind this Markov process is that
when a navigates to b’s profile on twitter, there is some probability that a will click
to find all of b’s followers or that a will click to find out who b is following. Figure
shows the query types that were simulated.

GetTweets: "SELECT % FROM tweets WHERE uid = 77
GetFollows: "SELECT {2 FROM follows WHERE f1 = ? LIMIT 20”
GetFollowers: 7"SELECT {2 FROM followers WHERE f1 = 7 LIMIT 207

Figure 4: Simulated Queries in Modified Twitter Benchmark

The Markov process was structured as follows:

e GetTweets queries could have child queries of GetFollows or GetFollowers,
where £1 would be equal to the uid from GetTweets.

e GetFollows queries could have a child query of GetTweets, where uid would be
randomly selected from £2 in the result of the GetFollows query.

e GetFollowers queries could have a child query of GetTweets, where uid would
be randomly selected from £2 in the result of the GetFollowers query.

We populated a database with 100 users, 5000 tweets, 2000 follower relationships,
and 2000 follow relationships. Then, we ran performance tests with and without Ea-
gerDB, using different probabilities for navigating to a child query. Table [I| shows the
results of our tests.

We ran the tests for varying child query probabilities. We define the child query
probability p, as the probability that the Markov process will navigate to a child query

http://www.oltpbenchmark.com

Query Type
Child Query
Probability | GetFollows GetFollowers GetTweets
p=0.1 8.34% 4.83% 4.99%
(7.29) (5.08) (5.53)
p=02 0.46% 27.3% 14.3%
(0.43) (1.01) (1.26)
p=0.3 18.9% 1.89% 39.5%
(1.27) (0.98) (1.83)
p=04 8.09% 36.1% 35.1%
(7.78) (1.74) (1.68)

Table 1: Performance Results: Percentage improvement in latency when running Twitter
benchmark with and without EagerDB. Positive numbers indicate EagerDB has decreased
average latency. Numbers in parentheses are t-statistics, and bolded text connotes statistical
significance at the 95% level.

using the previous query. The probability of creating a completely random query is
then 1 — p.

Table [If shows the results of running the Twitter benchmark with and without
EagerDB. The table shows percentage improvements in average latency using EagerDB.
In the table, one can see that overall, EagerDB improves performance significantly
for different types of queries. As the probability p of transitioning to a child query
increases, we tend to see an increase in the magnitude of the performance improvement.
This observation makes intuitive sense because as the probability of going to a random
query goes down, it is more likely that the match-preload statements in EagerDB will
be predictive of future queries.

Thus, EagerDB improves performance across the board for the Twitter benchmark.
There are no types of queries (with any probability p), where one does not see a
nominal performance improvement (although some are not statistically significant).
Interestingly, performance improvements of 30-40% occur with the GetFollowers and
GetTweets query type (and are statistically significant). This provides strong evidence
that EagerDB improves performance, at least for workloads which have some non-zero
probability of using previous query bind values or results. The results in table [1| seem
to suggest that EagerDB can improve performance in applications where each user has
a predefined, methodical workflow.

Another observation from the benchmark results was the ease of integration. Only 9
lines of code were needed in order to fully integrate EagerDB into the Twitter Bench-
mark. Since EagerDB is both easy to integrate and performant, one can improve
database speed without much effort.

A final observation to make on the result data alludes to a potential optimization
for the future. There were some cases where the variance in the latencies for queries
was quite high when the benchmark was run with EagerDB. In fact, looking at the

10

underlying data, one could consistently see that about 0.2% to 0.5% of queries were
three or more standard deviations above the mean when using EagerDB. However, the
benchmark without EagerDB never had these types of outliers. Thus, there were a
small number of times when EagerDB caused excessively long query latencies. This
is potentially due to the fact that a query would arrive at the database while its
preload query was being cached. Thus, the query would have to wait for the preload
to finish before executing, causing much longer query latency. To avoid this, EagerDB
in the future should implement a stop protocol that prevents a preload statement from
executing after a particular expiration time.

6 Conclusion

This paper presented EagerDB, a predictive cache warmer for database queries. Ea-
gerDB sets out to improve performance by using historical database logs to predict
future queries. The design of EagerDB makes it scalable, flexbile, and easily config-
ured to many applications. In particular, the design enables distribution of processor
aggregators across multiple machines, sharding on the underlying database, easy inte-
gration into applications, and parallelized processing of historical database logs.

All of these serve to increase the performance of a database-backed application while
minimizing the amount of setup time required. EagerDB can be used to help optimize
many web applications which have repetitive workflows, where database queries will
not necessarily be cached.

There are many future directions for research. First, EagerDB was actually de-
signed so that processors could be subclassed, so that developers could write their own
processors. For example, one might want to match on more than just a single query,
or use application meta-data in order to help preload queries. One can currently write
such a processor, but there is no way to include such metadata. A small step to-
wards this more flexible framework would be to include application-level metadata in
SQLQueryJobs.

Next, the system should begin to optimize how raw SQL and the results from the
raw SQL query get sent to processors. Currently, the results and the raw SQL are
both encapsulated with a SQLQueryJob, then sent to a processor aggregator. However,
executing the SQL query and waiting for the results causes extra wait time before
the SQLQueryJob can be sent to its processor aggregator (sometimes a couple hundred
milliseconds). An improvement would be to have the raw SQL sent in a SQLQueryJob
immediately to a processor aggregator. While the aggregator processes this job, the
result of the query could be placed in a staging area where processed preloads are
sent. After the result and its corresponding preloads are both in the staging area, the
preloads could inject the correct bind values using the result and be sent off to be
executed by the database.

EagerDB is a step towards automatically improving database performance. This
paper has described its design and shown its proficiency in handling repetitive work-
flows.

11

	Introduction
	Background
	Manual Query Syntax
	Basic Definitions
	Match Preload Files

	System Design
	Processing Code
	Sharding Databases and Scaling EagerDB
	Prediction Code

	Results
	Conclusion

