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Abstract—The preservation of natural ecosystems has become
an increasingly important area of research. We examine the
dynamics of the hammerhead shark (Sphyrna lewini), cownose
ray (Rhinoptera bonasus), and bay scallop (Argopecten irradi-
ans) populations. We estimate parameters of the system for
the east coast of the United States, obtain analytical results
concerning the general equations, and apply this knowledge to
make policy recommendations that stabilize the ecosystem. We
also show that without government intervention, the endangered
hammerhead shark population will die off.

1 INTRODUCTION
We consider the following ecosystem, where
X, Y, and Z are the number of scallops,
cownose rays, and hammerhead sharks respec-
tively. We assume these populations evolve
continuously as:

Ẋ = R0X(1−X/K0)− C1F1(X)Y

Ẏ = F1(X)Y − F2(Y )Z −D1Y (1)
Ż = C2F2(Y )Z −D2Z

Fi(U) =
AiU

Bi + U
We can nondimensionalize the system using

the following dimensionless variables:

x = X/K0

y = C1Y/K0

z = C1Z/(C2K0) (2)
t = R0T

Which leads to the following nondimension-
alized system:

ẋ = x(1− x)− f1(x)y
ẏ = f1(x)y − f2(y)z − d1y (3)
ż = f2(y)z − d2z

fi(u) =
aiu

1 + biu

2 PARAMETER FITTING

2.1 Parameter Interpretations
It is evident that K0 represents the carrying
capacity of the scallops, and R0 represents the
logistic growth rate of the population. The
conversion factors C1 and C2 must have di-
mensions [scallops/rays] and [sharks/rays] in
order for them to nondimensionalize y and z.
These parameters represent the carrying capac-
ity of rays and sharks in terms of K0. One can
also see that D1 is the death rate of a rays and
D2 is the death rate of sharks.

Analyzing the functions Fi show that they
must have dimensions of [1/time]. This means
that Ai has units of [1/time] and Bi has units
of population. Ai represents the frequency of
predation in a unit of time, while Bi represents
a close to average population size.

2.2 Parameter Values
In light of these observations, we can attempt
to fit these parameter values to our problem.
First, we will only consider the region where
scallops and cownose rays are prominent,
which is on the eastern coast of the United
States. We will pick the area where scallops
usually inhabit, which roughly corresponds to
the coastline between North Carolina and Cape
Cod. This is about 800 miles of coastline, and
scallops inhabit up to about 3 miles offshore
[3]. Scallop densities in the late 1970s and early
1980s were about 20 scallops per square meter,
which is historically close to the highest density
reached [3]. This means that we have a carrying
capacity of roughly K0 = 1×1011 scallops in our
region. The average density of scallops now has
dropped dramatically and is probably closer
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to 5 scallops per square meter, which leads to
roughly B1 = 2× 1010.

Next, we note that cownose rays consume
about 1.5% of their body weight each day
according to [4] who determines consump-
tion based on V O2 respiration. The average
cownose ray weighs about 10kg while the av-
erage scallop weighs about 0.02kg. Thus, as-
suming scallops consist for about 50% of a
ray’s diet, the average ray consumes about 1300
scallops per year. If we assume that cownose
rays eat scallops five times a day, we have pa-
rameter values of roughly A1 = 5 and C1 = 380.

The average density of cownose rays in
Chesepeake Bay is roughly 0.001 rays per
square meter [1]. We can estimate C1 from this
data as well. Assuming we have roughly a
density of 2.5 scallops per square meter (since
scallop densities dropped off dramatically since
[3] performed their measurements), we see that
there are about C1 = 2.5/(0.001 ∗ 5) = 500 scal-
lops per ray. Taking the average of the two C1

values we obtained, we will use C1 = 440. We
can also obtain the parameter for the average
population of rays B2 = 5 × 106 using this
estimate.

Hammerhead sharks consume about 2% of
their body weight each day [2]. Since ham-
merheads weigh about 150kg, and cownose
rays are about 10kg, we see that hammerheads
consume about 50 cownose rays per year if we
assume cownose rays account for about 50%
of the hammerhead diet. Thus, we find the pa-
rameter values of A2 = 3 and C2 = 1/50 = 0.02.

Death rates can be obtained by looking at
average lifetimes and assuming uniform distri-
butions of age. Cownose rays live for about 15
years, so we obtain D1 = 0.07, while hammer-
heads live about 25 years, so D2 = 0.04. We
assume a growth rate of R0 = 20.

2.3 Dimensionless Parameters
Since we have estimates for the parameters in
our original equations, we can find the nondi-
mensionalized parameters. We can express the
nondimensionalized equations in terms of the
dimensionalized coefficients. This is done by
setting ~x = h( ~X), where h is the function that
maps X, Y, Z to x, y, z. After we have d~x/dt in

TABLE 1
Parameter Value Estimates

Paremeter Dimension Value References

Dimensionless Conversion Parameters
C1 [scallops/rays] 440 [4] and [1]
C2 [sharks/rays] 0.02 [2]

F1 and F2 Function Parameters
A1 [1/time] 5
A2 [rays/(time ∗ sharks)] 3
B1 [scallops] 2× 1010 [3]
B2 [rays] 5× 106 [1]

Scallop Population Parameters
K0 [scallops] 1× 1011 [3]
R0 [1/time] 20

Death Rates
D1 [1/time] 0.07
D2 [1/time] 0.04

terms of ~X , we can collect terms and regroup
X, Y, Z into x, y, z terms to obtain the following:

dx

dt
=

dX

dT

1

K0R0

=
1

K0R0

(
R0X

(
1− X

K0

)
− C1

A1X

B1 +X
Y

)
= x(1− x)−

A1K0

R0B1
x

1 + K0

B1
x
y (4)

dy

dt
=

dY

dT

C1

R0K0

=
C1

R0K0

(
A1X

B1 +X
Y − A2Y

B2 + Y
Z −D1Y

)
=

A1K0

R0B1
x

1 + K0

B1
x
y −

A2K0C2

R0B2C1
y

1 + K0

B2C1
y
z − D1

R0

y (5)

dz

dt
=

dZ

dT

C1

R0C2K0

=
C1

R0C2K0

(
C2

A2Y

B2 + Y
Z −D2Z

)
=

C2A2K0

R0B2C1
y

1 + K0

B2C1
y
z − D2

R0

z (6)

Using these equations, we can obtain the
expressions for the dimensionless parameters
in terms of the parameters from the original
equation. Using these expressions, we can ob-
tain estimated values for ai, bi, and di based
on the estimated values for the parameters
from the original equations. Substituting these
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values into the dimensionless equations, we
have:

ẋ = x(1− x)− x

1 + 5x
y

ẏ =
x

1 + 5x
y − 0.1y

1 + 45y
z − d1y (7)

ż =
0.1y

1 + 45y
z − d2z

TABLE 2
Dimensionless Parameters

Parameter Expression Estimated Value

F1 and F2 Function Parameters
a1

A1K0
R0B1

1
a2

A2K0C2
R0B2C1

0.1
b1

K0
B1

5
b2

K0
B2C1

45

Death Rates
d1

D1
R0

4× 10−3

d2
D2
R0

2× 10−3

3 SIMPLE PROPERTIES

3.1 Fixed Points
The first analysis one can perform is to look for
fixed points of the nondimensionalized system
where d

dt
~x = 0. A trivial fixed point is where

~x1 = (0, 0, 0). To analyze its local stability,
we can linearize and find the Jacobian of the
system evaluated at ~x1. The Jacobian is:

[
1− 2x− a1y

(1+b1x)2

]
,
[
− a1x

1+b1x

]
, [0][

a1y
(1+b1x)2

]
,
[

a1x
1+b1x

− a2z
(1+b2y)2

− d1
]
,
[
− a2y

1+b2y

]
[0],

[
a2z

(1+b2y)2

]
,
[

a2y
1+b2y

− d2
]


(8)

Substituting (x, y, z) = (0, 0, 0) into the Jaco-
bian, we find:

J(0, 0, 0) =

 1 0 0
0 −d1 0
0 0 −d2

 (9)

It is clear that the linearized equations decou-
ple and we obtain x(t) = x0e

t, y(t) = y0e
−d1t,

and z(t) = z0e
−d1t. Since d1 and d2 are death

rates which are always positive, we see that y(t)

and z(t) decay to 0. However, the x(t) equation
grows with time. Physically, this means that
small perturbations about the origin lead to
the ray and shark populations dying out, while
the scallop populations will increase and be
repelled from the origin. This makes intuitive
sense because small populations of all three
animals means the predators will most likely
die off, while the scallop population without
predators should increase.

The other fixed point that occurs for all pa-
rameters is ~x2 = (1, 0, 0). The Jacobian at ~x2 is
the following:

J(1, 0, 0) =

 −1 − a1
1+b1

0
0 a1

1+b1
− d1 0

0 0 −d2

 (10)

Notice that the Jacobian is upper triangu-
lar so that the eigenvalues lie on the diago-
nals. The fixed point is locally stable if all the
eigenvalues are negative, which is equivalent
to the condition that a1/(1 + b1) < d1. Also
notice that the equations decouple, since one
can solve explicitly for z(t) = z0e

−d2t and y(t) =
y0e

(a1/(1+b1)−d1)t. Using our parameter estimates,
we find a1/(1+ b1) = 0.17 6< 4× 10−3. Thus, the
~x2 fixed point in our regime is not locally stable.

3.2 The Coordinate Axes
Any points starting with x = 0 will continue to
have x = 0 throughout time. This is because x
can be factored out of the ẋ equation, so that
ẋ = 0 if x = 0. This holds for y = 0 and z = 0 as
well. Thus, points beginning on any axis will
stay on that axis throughout time because the
x = 0, y = 0, and z = 0 values cannot change.
In addition, all trajectories beginning on the z-
axis of x = y = 0 move towards the origin,
since the z(t) equation decouples and becomes
z(t) = z0e

−d2t. Similarly, points on the y-axis
move towards the origin at y(t) = y0e

−d1t.
Points on the x-axis of y = z = 0 follow logistic
growth of ẋ = x(1− x).

Notice that the invariance of all three axes
means that phase space is broken up into
eight quadrants. Trajectories in one quadrant
can never cross over into another quadrant.
Since we are working with a physical system
representing populations, we will remain in the
first quadrant with x, y, z ≥ 0.
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3.3 Volume Contraction
Unlike in the Lorenz equations, this system
does not have volume contraction in general.
However, there are certain regions for which
volume contraction occurs. Using the diver-
gence theorem, we can derive

V̇ =

∫
V

∇~fdV (11)

Volume contraction occurs for regions where
∇~f < 0. We can compute this for our system:

∇~f = 1− d1 − d2 − 2x

+
a1(x− y)
1 + b1x

+
a2(y − z)
1 + b2y

+
a1b1xy

(1 + b1x)2
+

a2b2yz

(1 + b2y)2
(12)

There is at least one parameter regime for
which there is volume contraction. If 1 < d1+d2:

lim
b1,b2→∞

∇~f = 1− d1 − d2 − 2x < 0 (13)

Thus, for very large values of b1 and b2, one
can obtain volume contraction as long as d1 +
d2 > 1 are large enough. In these parameter
regimes, there are no quasiperiodic solutions.1

4 LIMIT CYCLES AND ATTRACTORS

Numerical experiments suggest that there ex-
ists an attractor somewhere in the region about
the origin, but only in the xy plane. We will
show analytically that this attracting region
exists as long as d1 < a1/(1 + b1). Notice that
this is the same condition for the ~x2 = (1, 0, 0)
fixed point to be unstable. After the analysis,
it will be clear that the local stability of the ~x2
fixed point will be governed by the appearance
of the attracting region, so that the appearance
of the limit cycle will correspond exactly with
the change in stability of ~x2.

We see the trajectory in figure 1 has peri-
odic oscillations in the xy plane. It seems to
be bounded by some boxed region about the
origin. Let us define this region in xy space as

1. If quasiperiodic solutions existed, then they would lie of
the surface of some manifold whose volume is constant in
time. But since there is volume contraction, this leads to a
contradiction.

[0, xh]×[0, yh], where xh and yh are constant val-
ues of x and y respectively. Clearly, trajectories
can’t leave the region through the x or y axis
because x, y ≥ 0 by the physical limitations of
the system, and because once x = 0 (y = 0)
then x stays 0 forever (similarly with y = 0).
Therefore, we need to make sure no trajectories
leave from the vertical x = xh line and the
horizontal y = yh line.

On the vertical x = xh line, we need to check
that ẋ < 0, so that trajectories only enter the
region. We have:

ẋ = xh(1− xh)−
a1xh

1 + b1xh
y (14)

The second term in this equation is always
negative. The largest it can be is 0 when y = 0.
Thus, xh(1−xh) < 0 is a sufficient condition for
ẋ < 0. This implies that xh > 1 will guarantee
that trajectories only enter the region through
the x = xh vertical line.

On the horizontal line y = yh, we need to
check that ẏ < 0:

ẏ =
a1x

1 + b1x
yh −

a2yh
1 + b2yh

z − d1yh (15)

Clearly the second and third terms are al-
ways nonpositive. The second term’s maxi-
mum occurs when z = 0. The coefficient of the
first term a1x/(1+b1x) is an increasing function
in x. We know that the maximum value of x in
the region is xh > 1. Thus, the maximum value
of the first term is a1/(1+ b1), and occurs when
xh = 1. Therefore, we see that ẏ < 0 exactly
when: a1

1 + b1
> d1 (16)

Thus, there exists a trapping region [0, xh]×
[0, yh] when a1/(1 + b1) > d1 (since the first
condition xh > 1 can always be satisfied).

4.1 Attractor Existence
Notice that there is a fixed point ~x3 = (x∗, y∗, z∗)
that might exist inside the trapping region. This
occurs at

~x3 =

(
d1

a1 − b1d1
,
a1 − d1 − b1d1
(a1 − b1d1)2

, 0

)
(17)

The a1/(1+b1) > d1 condition guarantees that
a1 > d1(1+b1) so that y∗ > 0 when the trapping
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region exists, since the numerator a1 − d1(1 +
b1) > 0 and the denominator (a1 − b1d1)

2 are
always positive. Since we can choose any yh
line for which ẏ < 0 given our condition of
a1 > d1(1 + b1), we can choose yh > y∗. This
means that the y coordinate of ~x3 is inside the
trapping region, so that 0 < y∗ < yh.

To show that the x∗ coordinate must be in-
side the trapping region, we must have a1 >
b1d1 for x∗ > 0. This follows directly from the
a1−d1(1+b1) > 0 condition, since a1−b1d1 > d1
and d1 ≥ 0, so that a1−b1d1 > 0. Moreover, since
a1− b1d1 > d1, we see that x∗ = d1/(a1− b1d1) <
1 = xh. Therefore 0 < x∗ < xh, which means
the x coordinate of ~x3 must lie in the trapping
region if it exists. Thus if the trapping region
exists, then the fixed point ~x3 will always exist
in the trapping region.

It is difficult to analytically examine stability
of ~x3, since the Jacobian evaluated at ~x3 gives
a complicated expression. However, we can
make qualitative observations. If ~x3 is unstable
and we have parameters such that no other
fixed point exists in the trapping region, then
there must be some type of attracting manifold.
This follows because all trajectories flow into
the trapping region, but never settle down to
any fixed point.

Moreover, we can say something even
stronger if ~x3 has positive eigenvalues cor-
responding to the x and y coordinates. This
would mean ~x3 is a repeller in the x and y
coordinates, so that one can construct a circle
of radius ε about the fixed point in the xy plane
and show that all trajectories are driven outside
this circle. By Poincaré Bendixson, a limit cycle
must exist in the xy plane. Note, however, that
this is not a limit cycle in phase space, since we
only gauranteed a degenerate limit cycle in a 2
dimensional subspace. 2

4.2 Example System with Attracting Mani-
fold
Using certain parameters, we can show there
exists some attracting manifold inside the xy
trapping region. Take b1 = 5, b2 = 45, a2 =

2. If one plotted the x and y coordinates against each other,
one would see a limit cycle. This corresponds to looking down
onto the xy plane from some z > 0

0.1, d2 = 0.002 like before, but now change d1 =
2 and a1 = 25. This corresponds to a regime
where fishing of rays increases dramatically.
Our analysis has shown that a trapping region
should exist when a1/(1 + b1) > d1, which is
indeed the case since a1(1+b1) = 25/6 > d1 = 2.
Moreover, one can numerically solve for the
Jacobian at ~x3 = (0.13, 0.06, 0). The eigenvalues
of the linearized system are 0.11 ± 1.0i and
−4.0 × 10−4. The real parts of the complex
eigenvalues are positive and shows that the
fixed point at ~x3 is unstable. Moreover, one can
numerically show that the other fixed points
with real, nonnegative values are ~x1 = (0, 0, 0)
and ~x2 = (1, 0, 0). Thus, ~x3 is the only fixed
point that lies inside the trapping region. Since
it is unstable, our analysis in section 4.1 shows
that we should see an attracting manifold and
limit cycle in the xy plane.

Fig. 1. Cylindrical Attractor

Indeed, this is the case. Figure 1 shows a tra-
jectory entering the trapping region given these
parameters. Rotating the figure to look down
onto the xy plane shows a stable limit cycle.
Changing the d1 parameter to a1(1 + b1) + 0.01
eliminates the manifold, as seen in figure 2,
although one can see a ghost of the cylindrical
shape in the trajectories.

Fig. 2. Ghost of Cylindrical Attractor
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4.3 Pear Shaped Trajectories
In some instances, trajectories take interesting
paths before reaching a limit cycle. Figure 3
shows a trajectory tracing out a pear shaped
object before arriving at a limit cycle in the
upper right corner of the figure. The figure
is drawn with the following system: d1 =
0.03, d2 = 0.001, a1 = 2, a2 = 0.01, b1 = 1, b2 = 1.
Since a1/(1+ b1) = 1 < d1 = 0.03, our analytical
results predict an attracting manifold.

Fig. 3. Pear Shaped Trajectory with Limit Cycle

Fixed point analysis shows that in addition
to (0, 0, 0), (1, 0, 0), and ~x3 = (0.015, 0.50, 0), we
have another real, nonnegative fixed point at
~x4 = (0.88, 0.11, 100). The two fixed points ~x3
and ~x4 lie in the trapping region. The Jacobian
about ~x3 has eigenvalues of −2.6× 10−4± 0.17i
and 2.3 × 10−3. Although this fixed point is
stable in the xy plane, it is unstable in general.
The other fixed point at ~x4 has eigenvalues of
0.86,−7.9, and 9.7×10−4. Thus, this fixed point
is also unstable and we find two unstable fixed
points in the trapping region. The pear shape is
centered about the ~x3 fixed point. The trajectory
then climbs upwards around the pear until it
reaches the region surrounding the ~x4 fixed
point.

Fig. 4. Limit Cycle About ~x4

We can show numerically that the trajectory
surrounding the ~x4 fixed point is probably a
limit cycle. Figure 4 shows a close up of the

trajectory in the upper right corner of figure 3.
It is a closed orbit that repeats itself with period
of about P = 140.

5 CHAOTIC ATTRACTING MANIFOLDS

Although they can arise in the trapping region,
limit cycles are not guaranteed. There exist
other attracting manifolds which do not lead to
periodic orbits. Consider the following param-
eter regime: d1 = 0.03, d2 = 0.014, a1 = 1.3, a2 =
0.1, b1 = 3, and b2 = 1. An attracting manifold
exists because a1/(1 + b1) = 0.325 > d1 = 0.03,
and the trajectory in figure 5 shows a portion
of this attractor.

Fig. 5. Chaotic Attracting Manifold

The variation of the x coordinate throughout
time in figure 6 does not seem to be periodic.
Altough the trajectory appears to repeat itself,
just like in the Lorenz Attractor, these periodic
regimes seem to differ slightly. None of these
periods are exactly aligned, and it is clear from
figure 5 that trajectories do not intersect and
settle down to a stable equilibrium.

Fig. 6. Trajectory of x(t) Throughout Time

5.1 One Dimensional Map
Figure 6 shows apparently chaotic behavior,
but this may eventually settle down to a peri-
odic solution after a long enough time period.
To get a better sense of this behavior, one can
build a map of the local minima of x(t), where
xn+1 = f(xn) is given by the x value of the next
local minimum after xn.
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Fig. 7. Local Minima Map

The map looks like a log-normal distribu-
tion. However, the log-normal distribution is
difficult to examine analytically. Therefore, we
will simplify the empirical distribution using
an idealized model. We can approximate the
shape in figure 7 using c1, c2, c3 and c4 as unde-
termined positive constants in the relationship:

xn+1 = f(xn) = c1e
c2x + c3e

c4x (18)

The idealized model in figure 7 uses c1 =
−1.12, c2 = −1100, c3 = 1.1, and c3 = −390.

5.2 Fixed Points and Stability

The fixed points occur when xn+1 = xn = x∗.
For our parameters, this fixed point occurs x∗ =
1.84 × 10−5. To examine its stability, we shall
take its derivative and check |f ′(x∗)|. We have

f ′(x∗) = c2c1e
c2x∗

+ c4c3e
c4x∗

(19)

Evaluating, we find |f ′(x∗)| ≈ 3050, so the
fixed point is unstable. We can also look at
fixed points for f2(x) = f(f(x)), which corre-
spond to double period fixed points, or f3(x) =
f(f(f(x))) which correspond to triple period
fixed points. In general, we have the following
recursive relationship between the derivative of
fn−1 and fn:

f ′n(x
∗) =

(
c1c2e

c2fn−1(x∗)

+ c3c4e
c4fn−1(x∗)

)
f ′n−1(x

∗)

= f ′1(fn−1(x
∗))f ′n−1(x

∗) (20)

By following the recursion, we can rewrite
equation 20 into the following:

f ′n(x
∗) = f ′1(fn−1(x

∗)) . . . f ′1(f2(x
∗))f ′1(x

∗) (21)

Which can be further simplified into

f ′n(x
∗) = f ′1(x

∗)
n−1∏
i=1

f ′1(fi(x
∗)) (22)

To look at stability of fixed points, we must
find when |f ′n(x∗)| < 1. Since equation 22
is expressed completely in terms of f ′1(t), we
should analyze f ′1(t) for the range of t for
which |f ′1(t)| < 1. This occurs for t > 0.01
and t ≈ 0.0015. The region around t̂ = 0.0015
for which |f ′1(t̂)| < 1 is small enough that the
effective region for which |f ′1(t)| < 1 is when
t > 0.01. We can be almost sure that the nth
period fixed point is unstable if all terms in
equation 22 have magnitude greater than 1.
This means we have the following criterion for
instability of all fixed points, given a fixed point
x∗ of fn(x) :

fi(x
∗) < 0.01 ∀i ∈ {1, . . . , n} (23)

To examine this numerically, we can note
that stable fixed points for the ith period will
also be stable fixed points for the jth period,
where i < j. Thus, if we cannot find stable
fixed points in the jth period, where j >> 1,
then it is unlikely that stable fixed points exist
at all. We take a large j = 200 and calculate
f200(xk) = xk+1 for 2000 iterations. Figure 8
shows the last 400 iterations of this calculation.
There is no block of 200 points which repeats
itself in the last 400 iterations, which shows that
f200(x) (and subsequently all fi(x) for i < 200)
probably does not have a stable fixed point.

Fig. 8. Last 400 Iterations of f200(xk)

It seems unlikely that a completely different
pattern would arise for extremely large j and
contradict previous evidence of unstable fixed
points. However, if stable solutions of period
j > 200 do exist, these solutions would show
transient chaos and would seem chaotic for all
practical purposes.
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5.3 Fractal Dimension of Manifold
One can compute the fractal dimension of the
manifold in figure 5 by using the correlation
dimension. We compute a trajectory for a long
period of time (almost all trajectories on an
attractor have the same long term statistics, so
a single trajectory is sufficient). Let Nx(ε) be the
number of points lying within a ball of radius ε
centered about a point x on the trajectory. Now
let C(ε) = (

∑k
i=1Nxi

(ε))/k be the average of
Nx(ε) over many points of x. We should have
the following relationship:

C(ε) ∝ εd (24)

Where d is the correlation dimesion. A mod-
ified version of the Grassberger-Procaccia Al-
gorithm was implemented in Matlab. First, it
was tested on the Lorenz Attractor, and found
a dimension of 2.19, which is reasonably close
to dimension of 2.05 found by Grassberger and
Procaccia originally.

Fig. 9. Grassberger-Procaccia Results

The algorithm was run on the system in
figure 5 using a random set of initial conditions
within the cube [0, 1] × [0, 1] × [0, 1]. A total
of 5 × 105 iterations were computed, with the
first 1 × 105 being discarded to make sure the
trajectory reached the attractor. For each ε in
the set

⋃20
i=1{0.01i}, Nx(ε) was averaged over

100 randomly chosen points on the attractor.
Figure 9 shows the results of the calculation.
The x axis shows log2(ε) while the y axis shows
log2(C(ε)). The fitted linear model gives a slope
of 1.38± 0.09.

Thus, the fractal dimension of the attractor
in figure 5 is d = 1.38. At first glance, this
dimension seems incorrect since the shape in
figure 5 seems three dimensional. However,
after running the algorithm five more times
with different ranges of ε, we find that d = 1.38

is relatively robust. A possible explanation of
this phenomenon is that the attracting manifold
is never completely covered by a trajectory.
Much like trying to cover a ball with a piece
of yarn, figure 5 shows that there exist sizeable
gaps between nearby parts of the trajectory.
Although figure 5 shows t up to t = 1.5×104, in-
creasing the length of integration to t = 7.5×104
does not change the qualitative observation
that there are gaps between nearby parts of the
trajectory.

To show that simply increasing the length of
integration would not change this result, the
calculation in figure 9 was performed again
with 5× 106 iterations (an order of magnitude
larger than before), and run for a smaller set of
ε in

⋃10
i=1{0.001i}. The empirical model yielded

d = 1.46, which is within the 95% confidence
interval of our first estimate. This evidence sug-
gests that the fractal dimension of the manifold
is indeed close to d = 1.38.

6 POLICY RECOMMENDATIONS

With a solid theoretical underpinning, we can
begin to analyze the system in equation 4 with
our estimated parameters. First, we examine
the natural course of events.

6.1 Natural Ecosystem
In the natural ecosystem with parameters from
table 2, we see that almost all trajectories set-
tle down to an attracting manifold. Figure 10
shows the 3D phase portrait of the system
with a variety of initial conditions. Each of the
trajectories quickly moves onto an attracting
manifold which almost touches the x axis and
the trajectories spend most of their time near
x = 0.

The shark population (z coordinate) is
mostly stable, while the y coordinate has a slow
decay towards zero before it jumps back to
a higher level. The x and y coordinates have
behavior reminiscent of a relaxation oscillation,
as shown in figure 11. The x coordinate stays
below 0.001 for about 400 time steps until it
suddenly spikes upwards. The y coordinate
decays to about 75% of its previous maximum
until the relxation phase, when it jumps back
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Fig. 10. Phase Portrait of Natural Ecosystem

Fig. 11. Natural x(t) and y(t) Trajectories

close to its previous maximum again. The pro-
cess repeats itself about every 400 time steps.

The relaxation oscillation has implications
for the natural growth of aquatic populations.
In particular, it means that the scallops will
stay almost nonexistent for long periods of
time, and have short outbursts of population.
The rays will steadily die off, until the short
outbursts of the scallop population rejuvenate
the ray population. The shark population will
stay mostly constant.

These long term dynamics suggests that the
natural ecosystem may not lead to the best
economic solution, since the scallop fishing
industry will most likely be devastated.

6.1.1 Parameter Testing
However, it is possible that the parameters in
table 2 do not accurately represent the natural
system parameters. This situation seems likely
since we estimated these parameters with large
degrees of uncertainty. One parameter which
seems rather uncertain in the nondimensional-
ized system is b2, which is very large compared
to the other parameters. We can plot the long
term values of x for different values of b2.
Figure 12 plots x(t) for t ∈ [500, 1000] on the
y axis.

Figure 12 shows that the long term behavior
of x(t) settles down for approximately b2 > 20.

Fig. 12. Long Term x(t) Values

Thus, we can be reasonably sure that our anal-
ysis is correct for the range of b2 > 20. If our
estimates are off by more than a factor of 2,
however, then the natural ecosystem regime
might be different.

6.1.2 Fishing of Sharks
Now consider what happens when we account
for the overfishing of sharks which has oc-
curred in the recent years. Here, d2 will increase
since the death rate of sharks (D2 in the original
model) increases. This change on d2, however,
does not have drastic effects on the dynamics of
the system. The sharks will, of course, tend to
die off faster. The dynamics of the scallops and
the rays, however, remains largely unchanged.
This occurs because b2 = 45 is high enough in
comparison to a2 = 0.1 that f2(y) = a2y/(1+b2y)
is relatively small for any value of y in [0, 5].
This means that the change in ray population
due to predation by sharks will be relatively
small (this is the −f2(y)z term in the second
equation of 4) since y rarely gets larger than 5.

Fig. 13. Shark Death with d2 = 0.5

Indeed, figure 13 shows that the dynamics
of the scallop and ray relaxation oscillations
remain the same, but that the sharks die off.



10 18.353 FINAL PROJECT

Here, we have changed d2 = 0.5, but the
figure is representative of d2 in the approximate
parameter range of d2 > 9×10−3. The relaxation
oscillation in the x and y values occurs on
the parabolic loop of the xy plane. Thus, the
introduction of shark fishing does not produce
drastic changes in the ecosystem in general
because of the small number of sharks with
respect to rays. In effect, the shark population
can be thought of as independent of the ray
population because b2 >> a2 in the natural
ecosystem.

6.2 Fishing of Rays

What if the government instituted a policy of
fishing rays? Could this help save the shark
population and the scalloping industry? Recall
that parameters with a1/(1 + b1) > d1 led to
the existence of an attracting manifold. Both
the natural ecosystem and the ecosystem with
shark overfishing have an attracting manifold
because a1/(1 + b1) = 0.17 > 0.004 = d1.
Thus, changing d1 to any parameter value be-
low 0.17 will most likely lead to previously
found regimes (which were unsatisfactory). For
instance, take d1 = 0.08 and d2 = 0.02. Here,
we have stayed in the regime with relaxation
oscillations in the scallop and ray populations,
but we also have a decaying shark popula-
tion. Figure 14 shows the decay of the shark
population as the scallop and ray populations
oscillate.

Fig. 14. Mild Fishing of Both Sharks and Rays

Thus, we must attempt to exhaust our op-
tions and find regimes without attracting man-
ifolds, testing whether these lead to healthy
aquatic populations. Unfortunately, once we
exit the regime of attracting manifolds and

set d1 > 0.16, ~x2 = (1, 0, 0) becomes a stable
fixed point (recall from section 3.1 that once
a1/(1 + b1) < d1, then all eigenvalues of ~x2
become negative, so that ~x2 becomes stable).
Figure 15 shows 50 trajectories with different
initial conditions settling down to the ~x2 fixed
point.

Fig. 15. Stability of x2 = (1, 0, 0)

Thus, even though ~x2 is only locally sta-
ble, it seems that most trajectories starting out
with reasonable initial conditions tend to settle
down to ~x2.3 Since both shark and ray popula-
tions die out at ~x2, the fishing of rays does not
seem like a good government solution.

6.3 Ban on Shark Fishing
Another possible solution is a government ban
on shark fishing, which would correspond to
setting d2 = 0. However, this solution will
cause some undesired results in terms of the
ray population. This is because the sharks will
grow wildly and feed on the ray population
until the rays die off to extremely low levels
and only scallops and sharks are left.

Fig. 16. Populations After Shark Fishing Ban

Figure 16 shows the x(t), y(t) and z(t) tra-
jectories for t ∈ [0, 1750] when d2 = 0 in our

3. Reasonable here means that initial conditions begin inside
the [0, 2]× [0, 2]× [0, 2] cube in R3.
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original system. At first, relaxation oscillations
occur for scallop and ray populations. How-
ever, the shark population eventually grows
large enough so that y(t) stays at essentially
0 as t → ∞. This solution is not satisfactory
either.

6.4 Pear Shaped Trajectories

Since none of the other solutions have worked,
we shall go back and rely on the knowledge
we have previously derived. Recall that the
pear shaped trajectory in section 4.3 had a
stable limit cycle that oscillated about a real,
nonnegative fixed point. Since all x, y, and z
coordinates on this limit cycle were positive,
this would correspond to a stable oscillatory
regime where each aquatic population stayed
alive indefinitely.

Thus, the government can attempt to coerce
the current parameters into a regime with a
pear shaped trajectory. The pear shaped tra-
jectory would create a stable limit cycle and
keep each aquatic population at a healthy level.
To minimize the number of parameters that
must be changed, we will look for a pear
shaped trajectory that most closely matches the
parameters of the natural ecosystem.

Fig. 17. Pear Shaped Trajectory with Stable
Fixed Point

A pear shaped regime can be found by
changing the following parameters: b2 = 1, d1 =
0.13, d2 = 0.06, with the other parameters re-
maining the same. A trajectory in 3D phase
space is given figure 17, with dynamics similar
to those seen in figure 3. A large number of
oscillations with small z eventually lead to a
stable point with a positive z coordinate.

Fig. 18. Pear Shaped Trajectories in Time

Figure 18 shows that the x(t), y(t), and z(t)
coordinates eventually settle down to a stable
fixed point at ~xp = (0.64, 1.5, 0.57) as t → ∞.
Thus, this parameter regime actually settles
down to become a stable ecosystem. Even bet-
ter, the parameter changes from d1 = 0.004 →
d1p = 0.13 and d2 = 0.002 → d2p = 0.06 can
be easily obtained by allowing more fishing of
rays and sharks. Not only is it easy to allow
this, but the citizens may actually support the
government’s increase of shark fishing.

The hardest parameter to change will be
b2 = 45 → b2p = 1. Recall that in terms of our
original parameters, we have b2 = K0/(B2C1).
Thus, the government can either attempt to
increase B2 or C1, or attempt to decrease K0.
All of these actions will have consequences on
a2 = (A2K0C2)/(R0B2C1). However, since C1

and C2 only appear in a2 and b2, one can adjust
both C2 and C1 in order to decrease b2 while
keeping a2 constant. The government needs
to increase C2 by the exact same amount as
C1. This is difficult, however, since C1 and C2

represent the carrying capacity of scallops and
sharks respectively in terms of rays.

However, this seems like the best chance for
the government which has exhausted all other
easy policy solutions. Let us call this the “Pear
Policy” and examine how the government can
implement it.

6.4.1 Implementation of the Pear Policy

The government must decrease the natural car-
rying capacity of both scallops and sharks in
comparison to rays. Notice that fishing alone
will not be sufficient to implement the Pear
Policy, since fishing does not affect natural
carrying capacities. The government needs a
solution that will limit the scallop and shark
population in the absence of fishing.



12 18.353 FINAL PROJECT

One way to accomplish this is to fish other
prey populations. Since sharks do not solely
feed on rays, one can decrease the shark car-
rying capacity with respect to rays by limiting
the shark population’s other food supplies. For
instance, the fishing of squid and octopus (two
other fishes in the hammerhead diet) would
likely decrease C2. Constraining the main food
supply of scallops (plankton) would likely de-
crease C1.

This approach, however, seems ill-advised.
Since we have not modelled a system including
the squid and octopus populations, we have
no idea whether fishing will cause dramatic
effects on other parts of the ecosystem. More
importantly, we do not know how fishing will
impact the squid or shark populations. It could
be the case that some complicated dynam-
ics lead to completely conterintuitive results
and increase C2 instead of decreasing it. We
have shown in this paper that blindly applying
guesses to a potentially chaotic system can lead
to catastrophic results. Likewise, killing off the
plankton population will almost certainly have
consequences in the larger ecosystem, since
plankton are basic sources of food for many
aquatic animals.

This does not bode well for the survival
of the scallop, ray, and shark ecosystem. The
ecosystem’s demise results mainly from the dif-
ficulty of arriving at a stable fixed point or limit
cycle by changing natural parameters. Instead,
one could let the natural ecosystem run its
course, but protect the shark population in a
autonomous system (for example in fisheries).

6.5 Fisheries
If the government removed all sharks from the
ecosystem and allowed them to live in a fishery
with an abundant supply of food, then the
natural shark population would reach z = 0.
Thus, we have a new two dimensional set of
equations:

ẋ = x(1− x)− f1(x)y
ẏ = f1(x)y − d1y (25)

Where f1(x) = a1x/(1 + b1x) is defined as
before. We can leave the population parameters
the same at a1 = 1, a2 = 0.1, b1 = 5, and b2 = 45

(of course a2 and b2 no longer matter here). One
could then increase d1 (the fishing of rays) to
some value below a1/(1 + b1) = 1/6 to induce
a stable attracting manifold about positive x
and y populations. This would result in the
following trajectories with d1 = 0.13:

Fig. 19. Stable Oscillations in Scallop and Ray
Populations

Thus, we can solve our ecosystem problem
by fishing rays and creating a fishery for the
hammerhead sharks. Although this does not
give the government a cost-effective solution,
it will keep the scallop, ray, and shark popula-
tions alive indefinitely. In fact, the government
could tax the scallop fishing industry (which
would have been devastated in the natural
ecosystem) to pay for the shark fishery.

7 CONCLUSION
This paper has analyzed an ecosystem of scal-
lops, rays, and hammerhead sharks. We con-
clude that the natural ecosystem without fish-
ing leads to the economic collapse of the scallop
fishing industry, while the fishing of sharks
leads to the death of the shark population. The
government’s best solution is to create a shark
fishery and allow for the fishing of rays.
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